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The face recognition company

Effects of Wrong ID Labels

Thorsten Thies
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The story behind this talk

Advancing 
technology

Much lower 
error rates

Need for 
larger tests

Higher costs

How to measure low FMRs and FNMRs with a limited number of 
samples?

Solution: Use a data set with many samples per person and do a 
cross-comparison.
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Which error rates can be measured?

Rule of 30: 

ISO/IEC FDIS 19795-1

Information technology -
Biometric performance 
testing and reporting, 

annex B.1.2



November 2018 · © Cognitec Systems 7

PUT face database

9971 face 
images of 
100 persons 
(~100 images 
per person)

A. Kasinski, A. Florek, A. Schmidt, The PUT face database, Image Proc. & Comm. 13, pp. 59–64 (2008)
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Test result – DET curve
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ID1 ID2 ID3 ID4 ID5 ID6 ID100

randomly select 50 of the 100 persons

for each selected person, randomly pick one sample

assign the selected samples to another person

. . .
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Test result – DET curve



November 2018 · © Cognitec Systems 14
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Slight modification – Strong impact

We altered only 0.5% of the samples.

Altering one label affects ~100 positive and ~100 negative scores.

1% of the positive scores are affected.
0.01% of the negative scores are affected.

But
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Test result – DET curve
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Wrong labels do occur in practice

§ different spellings of names / ID labels
§ file naming errors
§ errors during capturing process
§ errors during ID labeling process
§ fraud
§ . . .

Note: Large facial image databases collected from the internet 
often contain many wrong ID labels.
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Detecting a wrongly labeled sample x  
Naive approach: check positive pairs with scores < threshold T
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If x has all positive scores ≥T, you won’t detect x
If x has a positive score <T, there are often many other positive pairs 
involving x, at score <T, spamming your list
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Detecting a wrongly labeled sample x  
Naive approach: check positive pairs with scores < threshold T
Drawbacks: 
If x has all positive scores ≥T, you won’t detect x
If x has a positive score <T, there are often many other positive pairs 
involving x, at score <T, spamming your list
Better: consider all positive scores involving x, at once

fre
qu

en
cy

match score

Scores involving x

Scores not involving x
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M. Hollander, D. Wolfe, E. Chicken, 

Nonparametric statistical methods, 
3. ed., Wiley (2013)

Kolmogorov-Smirnov Test
compares two 

distributions, 
of N resp. M scores

rejects the 0-hypothesis 
(„scores stem from the 
same distribution“) 

at level α if

D > −#
$ (log α)

()*
(*

D
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How large does D need to be?

100 samples/person,
significance level α=0.001

D=0.2 is sufficient
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Outlier detection method

x1 x2 x3 x4 . . . xn

x1 1 .97 .42 .89 . . . .98

x2 .97 1 .31 .79 . . . .99

x3 .42 .31 1 .62 . . . .15

x4 .89 .79 .62 1 . . . .82

. . . . . . . . . . . . . . . . . . . . .

xn .98 .99 .15 .82 . . . 1

Score matrix of all n 
samples of a person
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Outlier detection method

x1 x2 x3 x4 . . . xn

x1 1 .97 .42 .89 . . . .98

x2 .97 1 .31 .79 . . . .99

x3 .42 .31 1 .62 . . . .15

x4 .89 .79 .62 1 . . . .82

. . . . . . . . . . . . . . . . . . . . .

xn .98 .99 .15 .82 . . . 1

Pick a sample x and 
mark all related scores

x
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Outlier detection method

x1 x2 x3 x4 . . . xn

x1 .97 .42 .89 . . . .98

x2 .97 .31 .79 . . . .99

x3 .42 .31 .62 . . . .15

x4 .89 .79 .62 . . . .82

. . . . . . . . . . . . . . . . . .

xn .98 .99 .15 .82 . . .

Ignore irrelevant 
identical comparisons

x



November 2018 · © Cognitec Systems 27

Outlier detection method

x1 x2 x3 x4 . . . xn

x1

x2 .97

x3 .42 .31

.89 .79 .62

. . . . . . . . . . . . . . .

xn .98 .99 .15 .82 . . .

Ignore redundant 
symmetrical scores

x
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Outlier detection method

§ determine the cumulative histograms
for each sample x:

§ A(x) of  positive scores involving x 
§ B(x) of positive scores NOT involving x

x1 x2 x3 x4 . . . xn

x1

x2 .97

x3 .42 .31

.89 .79 .62

. . . . . . . . . . . . . . .

xn .98 .99 .15 .82 . . .
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Outlier detection method

§ determine the cumulative histograms
for each sample x:

§ A(x) of  positive scores involving x 
§ B(x) of positive scores NOT involving x
§ compute maximum absolute 

difference D between A(x) and B(x)
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Outlier detection method

§ determine the cumulative histograms
for each sample x:

§ A(x) of  positive scores involving x 
§ B(x) of positive scores NOT involving x
§ compute maximum absolute 

difference D between A(x) and B(x)
§ compute p-value:
p(D)	=	exp	(-2	D2 (+,-)(+,.)+ )

§ for a threshold T, report all x with 
p(D)<T , ranked by p(D)

x1 x2 x3 x4 . . . xn

x1

x2 .97

x3 .42 .31

.89 .79 .62

. . . . . . . . . . . . . . .

xn .98 .99 .15 .82 . . .
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PUT face database

9971 face 
images of 
100 persons 
(~100 images 
per person)

IDs of 50 samples changed
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Results

. . .

All 50 wrongly 
labeled samples 

appear among the 
top 53 outliers.1-10

11-20

21-30

31-40

41-50

51-60

61-70

71- . . .

Rank
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Three outliers with correct ID label

outlier rank 12 outlier rank 13

outlier rank 48
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Know your algorithm – and your data

Running this outlier detection makes sense even if 
your data has entirely correct labels:

§ It can point you to unusual samples in your data, 
e.g. image capturing failures.

§ It indicates which variations among the samples of 
a person are easier or harder for your algorithm.
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In summary

Cross-comparison tests with many samples per person are 
efficient to reliably measure low error rates.

However, they are sensitive to wrong labels.

The Kolmogorov-Smirnov test finds wrong label samples and 
other outliers efficiently.

1
2
3
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The face recognition company

Thank you!    Questions?

We are committed to delivering the 
best face recognition performance 
available on the market.

www.cognitec.com

info@cognitec.com


